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On a hidden symmetry of a relativistic Coulomb problem in the 
quasipotential approach 
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Institute of Physics, Academy of Sciences of the Azerbaijan SSR, Narimanov pr 33, Baku 
370143, USSR 

Received 13 November 1987 

Abstract. The Runge-Lenz vector for a relativistic Coulomb problem in the quasipotential 
approach is found. The energy spectrum is obtained by an algebraic method. A hidden 
symmetry group of this problem is shown to be a group O(4) for lEl< 1, S O ( 3 , l )  for 
IEl> 1 and a motion group of the three-dimensional Euclidean space for l E l =  1. 

On the basis of the geometrical properties of the equations for quasipotential approach 
(Logunov and Tavkhelidze 1963, Kadyshevsky 1968) in the momentum space, the 
notion of three-dimensional relativistic configurational r representation was introduced 
by Kadyshevsky et a1 (1968). It was then used to construct a relativistic dynamical 
scheme in the two-body problem (Kadyshevsky er a1 1968, 1969a, b, Freeman er a1 
1969). This scheme possesses many important features of quantum mechanics, but 
unlike quantum mechanics, a quasipotential equation for the wavefunction of the 
relative motion is written in a finite-difference form. In the case of a local quasipotential 
V( r ;  E )  the equation for the wavefunction of spinless particles with equal masses has 
the form (Freeman er a1 1969) 

(1) 
where the finite-difference operator Ho is a relativistic free Hamiltonian ( h  = m = c = 1) 

[Ho+ V(r; E)]W(r) = E W ( r )  

a v =- 1 L2 
r 2r a r  

Ho= cosh(iV,)+-sinh(iV,)+yexp(iV,) 

and L2 is the square of the angular momentum operator. 
In the relativistic configurational r-representation some central quasipotentials, 

which are the relativistic generalisations of the exactly solvable problems of non- 
relativistic quantum mechanics, were considered. In particular, Donkov er a1 (1971), 
Atakishiyev er a1 (1982, 1985) and Atakishiyev (1984) construct and investigate a 
relativistic model of the three-dimensional harmonic oscillator possessing, as in the 
non-relativistic case, a high hidden U(3) symmetry and a dynamical SU( 1, 1) symmetry 
group. A motion of the relativistic particle in the attractive Coulomb field is studied 
by Freeman er a1 (1969). It is described by the equation 

H W ( r ) =  ( H o - a / r ) W ( r )  = E W ( r )  (3) 
where a is the fine structure constant. Due to the trivial O(3) symmetry here the 
angular dependences of the wavefunction are separated in the standard manner: 

W r )  = ( l / r )W,(r)  Y,fn(8, P). (4) 
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As shown by Freeman er a1 (1969), the discrete energy spectrum of the relativistic 
Coulomb problem under consideration is defined by the formula? 

E,, = (1 - n = l , 2 , 3  , . . . .  ( 5 )  

The corresponding radial wavefunctions are expressed through the hypergeometric 
function 

q n 1 ( r )  = CnI(r)  exp(-rx,,)(-r)('+')F [ - n + l + l ,  - i r + l + l ;  21+2; 1-exp(-2ixn)] (6) 

where Cne( r )  is an arbitrary i periodic function, sin x,, = a /  n and d A )  is the 'generalised 
degree' introduced by Kadyshevsky er a1 (1969b) 

However, in the case of the continuous spectrum, when E = cosh ,y 

It is to be emphasised that the expression ( 5 )  possesses the correct non-relativistic 
limit E,, - 1 + -a2/2n2 and is independent of the orbital quantum number 1 taking the 
values 0, 1,2, , . . , n - 1. Thus, in complete analogy with the non-relativistic case, an 
'accidental' degeneracy of the energy levels with respect to the orbital quantum number 
takes place. 

It is well known that the 'accidental' degeneracy of the non-relativistic hydrogen 
atom was first explained by Fock as far back as 1935. He has found that the Hamiltonian 
of the hydrogen atom is invariant under the four-dimensional rotation group O(4) (for 
E <0) or under the group of transformations isomorphic to the Lorentz group (for 
E > 0) (Fock 1935a,b) (see also Bander and Itzykson 1966, Perelomov and Popov 
1966). As was shown by Bargmann (1935) the hidden symmetry of the hydrogen atom 
is closely connected with the existence of the additional, besides the angular momentum 
L, integral of motion-the Runge-Lenz vector (Pauli 1926) 

A , = * l ; ; i ( a - + - ( L ~ p , - p ~ ~ ~ ) )  r 1  
r 2m 

where p N  is the non-relativistic momentum operator. Just the operators L and AN 
generate the hidden symmetry group of the Hamiltonian of the hydrogen atom and 
the energy levels of the bound states are completely defined by their algebra. 

The purpose of the present paper is to find a hidden symmetry group (an invariance 
group) of the relativistic Coulomb problem under consideration. In the cases when 
IEI< 1, E # 0 (the discrete spectrum) and E = 0 it was group O(4); and in the case 
when [El> 1 (the continuous spectrum) the Lorentz group SO(3, l )  turned out to be 
such a group. In the special case with [El = 1 a hidden symmetry group is isomorphic 
to the motion group of the three-dimensional Euclidean space. 

It will be noted that the relativistic Coulomb problems having the O(4) symmetry 
are also considered by Biedenharn and Swamy (1964), Itzykson er a1 (1970) and Barut 
and Bornzin (1973). 

t As is shown here the energy spectrum is actually symmetric relative to the E = 0 point. 



Hidden symmetry of a relativistic Coulomb problem 2561 

We can show that the ‘accidental’ degeneracy of the relativistic Coulomb problem 
considered here, similar to the problem on the non-relativistic hydrogen atom, is 
connected with the existence, besides the operator L, of one more integral of motion 

A = a [ ( f - 1)  n - m ] + f ( p x L - L x p ) (9) 

where p is a finite-difference momentum operator in the relativistic configurational r 
representation. (The expressions for the momentum p as well as for the three- 
dimensional vectors n and m are presented in the appendix.) In the non-relativistic 
limit the integral of motion A coincides with the Runge-Lenz vector A N  (8) and thus 
is a generalisation of the vector AN for the relativistic case. 

Using the formulae given in the appendix it can be verified by direct calculation 
that the commutation relations between the operators L, A and H assume the following 
form: 

[LIY & I  = i & y k L k  [ L~ 3 1 = i E # ] k A k  

= i ( l  - H2)&VkLk 

[LI, HI = [ A , ,  HI = 0 

As in the non-relativistic case it is also true that 

i, j ,  k = 1,2,3.  

AL=LA=O. ( 1 1 )  

The square of the vector A is expressed through the squares of the angular momentum 
operator L2 and the Hamiltonian H 2  as 

= ( H ~  - I ) ( L ~ +  1)  + a 2 .  (12) 

Going now to the operators 

fo r lEI< l  
for IEl= 1 
for ( E ( >  1 

instead of (10) we obtain 

where a = 1 ,  0, - 1 for the ranges I E 1 < 1, ( E  1 = 1 and 1 E I > 1,  respectively. Equations 
( 1  1 )  and (12) are written in terms.of the operators Ni in the form 

L N = N L = O  

( 1 - H’)  ( L’ + a ~ 2  + 1 )  = a 

N’= ( H ~ -  I ) ( L ~ +  i ) f a 2  a=0. 

a = * l  (15) 

According to the values of U = * l ,  0 the commutation relations correspond to the 
three different Lie algebras. 
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(i)  For a = 1 ( 1  E I < 1) the relations (14) coincide with the commutation relations 
for the generators of the rotation group O(4) of the four-dimensional Euclidean space. 
In this case to define the discrete energy levels of the relativistic Coulomb problem 
(3) by an algebraic method, as usual we introduce two angular momentum operators 
J ' l )  and #*I, which commute among themselves as 

J'" = $ ( L +  N )  J'*' = 4 ( L  - N )  

[ ~ j ' ) ,  J)')]  = iEykJIp) a = l , 2 .  

In accordance with the relations (15) we have 

( J ( 1 ) ) L  ( J (" ) '= i (L2+N' )  = j ( j +  1) 

Comparing (5) with (17), we conclude that n = 2 j+  1, i.e. j = i ( n  - 1) = 0, f ,  l,;, . . . . 
Thus, the states of the discrete spectrum of the relativistic Coulomb problem, corre- 
sponding to the fixed value of the principal quantum number n, are described with 
the same finite-dimensional irreducible representation D(i(  n - l) ,  $( n - 1)) of the group 
O(4) as the states of the discrete spectrum of the hydrogen atom. 

(ii) For a = -l(l E I > 1) the relations (14) take the form of the commutation relations 
of the Lie algebra of the Lorentz group SO(3, 1). As is known, the values of the 
invariant Casimir operators F = L' - N' and G = LN for the infinite-dimensional 
irreducible unitary representation of the principal series D( m, p )  are equal to 

F = -[ 1 + $ ( p 2  - m 2 ) ]  G=" 4 P  

where m is an integer number and 0 < p <a. In the case of the continuous spectrum 
of the relativistic Coulomb problem from (15) we obtain that 

i.e. m = 0 and p = 2 a / ( E 2  - 1)"'. Consequently, the wavefunctions of the continuous 
spectrum with a given energy E realise a representation D(0, p )  of the Lorentz group. 

(iii) For a=O ( / E l  = 1) the components of the relativistic Runge-Lenz operator, 
as follows from (14), commute among themselves. In this case an algebra of the 
operators L and A coincides with the algebra of motion group of the three-dimensional 
Euclidean space. 

Thus, we have found the hidden symmetry group of the relativistic Coulomb 
problem in the quasipotential approach and defined its energy spectrum by the group- 
theoretic method. 

In conclusion we note that an explicit form of the wavefunctions with E = *l ,  0 
can be obtained from (17) by taking the corresponding limit E -$ *l, 0. For instance, 
for E =il we Gave 

T:( r )  = pi( r ) (  - r ) " + l ) + (  - ir  + J + 1,21+ 2; F 2ia) 

cp+(r)  = c l ( r ) / r  cp-( r )  = c2( r )  e-rr/ r 

where + ( U ,  b;  x) is the confluent hypergeometric function. 

spectrum case, is infinitely degenerated. 
We also note that each of the energy eigenvalues E = *l, 0, as in the continuous 
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Appendix 

Here we present some formulae used in the text. A momentum operator in the 
relativistic configurational r representation, which was found by Kadyshevsky et a1 
(1969a), can be written in spherical coordinates in the following compact form: 

P =  -n[exp(iV,)-Ho]-m(l/r) exp(iV,) (AI)  

n = (sin 6 cos cp, sin 6 sin cp, cos 6) ('4-2) 

where n = r / r  is a unit vector along the radius vector r :  

and a three-dimensional vector m has the following components: 

a sin cp d 
cos cp cos a--- - 

a 6  sin 4 acp 

a  COS^ a 
sin cp cos a-+- - 

a 6  sin 6 acp 

a 
a 6  

m3 = -i sin a-. 

In the limiting case when the velocity of light c + CO, p goes into the non-relativistic 
momentum operator 

(A41 

It can be shown that the scalar and vector products of the independent vector operators 
L, n and m are equal to 

( a )  m2 = L2 nL = Ln = 0 

mL= Lm = 0 nm = O  mn = 2i 

(b)  n x L = m  L x n = 2in - m 

m x L = im - nL2 L x m = im + nL2 

n x m = - L  m x n = L .  

For the components of these operators the following commutation relations hold 
( i, j ,  k = 1,2,3):  

[ ni, Lj] = isijknk 

[mi, m,] = -is.. yk  L k 

[mi, Li] = isijkmk 

[ ni,  m,] = i (  nin, - &). 

At the same time we have 

[ L', n l ]  = 2( n, + im,) 

[ P l ,  P,l = [P,, Hol = 0. 

[L*, ml] = - 2 i n , ~ ~ .  (A8) 
It is easy also to verify by direct calculation that 

(A91 
Under Hermitian conjugation with respect to the scalar product I q r V 2  d r  we have 
n: = n,, m: = m, -2in,. 
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